

5V SK6812 Side RGB led Datasheet

Specification

Model No.: SK6812V12-Side Product: 5V SOP4 0.2W sideview RGB led Document No.: SPC-TOP-C/230325 Issue Date :25-03-2023 Version: C-23

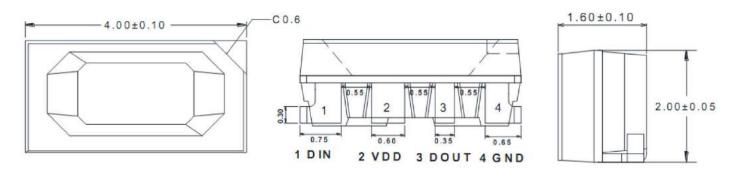
Greeled A	pproval	Customer Approval		
Aduit	Confirmation	Aprroval	Audit	
Mr Chiang	Ms Lee			
Date:		Qualified	Disqualified	
Reason:				

1.Product feature:

- •The control circuit and RGB chips are integrated in one SMD4020 package as one pixel, Built in various of function units.
- •DC5V,Default current 12mA per color,0.2W power consumption
- •The PWM Scanning Frequency 1.0khz
- •8bit per color,256 Gray scale, 256*256*256=16777216 true color display.
- •Support data rate up to 800kbps
- •The pixel cascades number is not less than 1024 pixels at 30 frame per second.
- •The data transmit base on SPI Communication protocol
- Upgrade led bracket to enhance PCB solder

2.Working principle description:

The SK6812 side emitting led adopt single data signal communication method, The data encoding adopt RZ code. The Din of led receive data from signal source, locking 24bit data and send them to data latch, PWM scanning unit deal 24bit data and send relative duty ratio signal to relative Emitting chips OUTR, OUTG, OUTB.

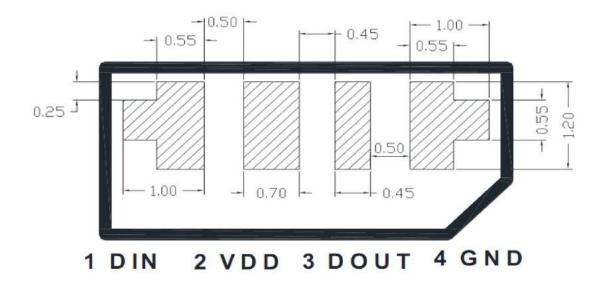

At the same time, Reshaping and amplify extra data, Forwarding them to subsequent led via Dout of led. Based on this rule. The data reduce 24bit pass through every pixel. All Emitting chips receive relative duty ratio signal and Emitting color.

The data auto-reshaping forwarding technology to ensure that the number of cascaded pixel is not limited. The more cascaded pixels request the higher data transmission rate.

3.Application:

- Billboard, light box, Device, Cabinet decoration
- The Component of light source.

4. Package dimension:



Remarks: All dimensions are marked in millimeters and the tolerance is ±0.10 mm, unless otherwise specified.

5.Pin diagram and function description:

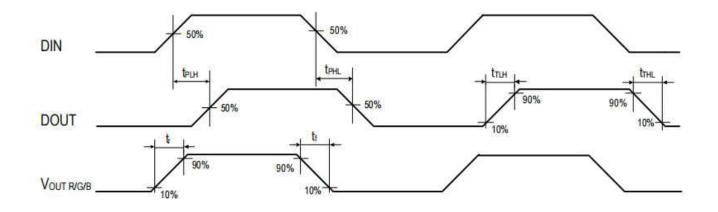
No.	Symbol	Function description				
1	DIN	Control data signal input				
2	VDD	Power supplier				
3	DOUT	Forwarding control data signal output				
4	GND	Ground				

6.Recommend solder Pad dimension:

Color	Wavelength(nm)	Light Intensity (mcd)	Lumen (LM)
Red	620-625	240-450	0.5-0.8
Green	520-525	800-1200	2.5-3.5
Blue	465-475	160-320	0.4-0.6

7.RGB chip characteristic parameter Ta=25 $^{\circ}$ C at 12mA:

8.Maximum rating (if no special instructions,Ta=25°C, VSS=0V):


Parameter	Symbol	Range	Unit
Voltage	VDD	+3.7~+5.5	V
Logic Input Voltage	VI	-0.5 \sim VDD+0.5	V
Working temperature	Topt	-40~+85	°C
Storage temperature	Tstg	-50~+85	°C
ESD pressure (HM)	VESD	200	V
ESD pressure (HBM)	VESD	2К	V

9.Electrical characteristics (if no special instructions, Ta=25°C):

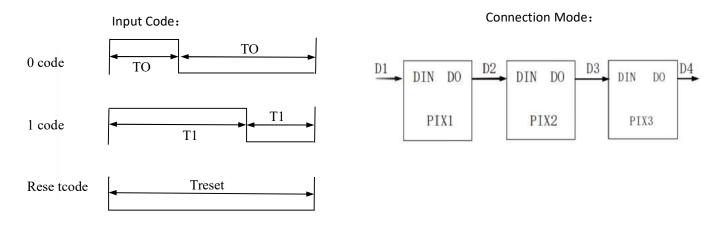
Parameter	Symbol	Min	Typical	Max	Unit
The chip supply Voltage	VDD	-	5.2	-	V
R/G/B port output drive current	IOUT	-	12	-	mA
High level input voltage	VIH	0.7*VDD	-	-	V
Low level input voltage	VIL	-	-	0.3*VDD	V
Static power	IDD	-	1	-	mA
PWM Frequency	Fpwm	-	1.0	-	KHZ

Parameter	Symbol	Min	Typical	Max	Unit	Test Conditions
Data Rate	bps	-	800K	-	bps	Duty Ratio 67% (data 1)
Disc /drop time	Tr	-	22	-	ns	R=200 Ω Dout to VDD
Rise/drop time	Tf	-	75	-	ns	C=30pf VDD to GND
DOUT Conversion	TTLH	-	9.6	-	ns	
time	TTHL	-	11.6	-	ns	VDD to GND C=30pf
DOUT transmit	TPLH	-	67	-	ns	DIN to DOUT at 20fms
delay time	TPHL	-	82	-	ns	DIN to DOUT at 30fps

10.Switch characteristics (if no special instructions, lout=12mA Ta=25°C):

11.Data transmission time(TH+TL≥1.20µs)

Name	Description	Min	Typical	Max	Allowable error	Unit
тон	0 code, high level time	0.2	0.32	0.4	±0.05	μs
T1H	1 code, high level time	0.6	0.67	1.0	±0.05	μs
TOL	0 code, low level time	0.8	-	-	±0.05	μs
T1L	1 code, low level time	0.2	-	-	±0.05	μs
TRST	Reset code, low level time	80	-	-	-	μs


1. The protocol uses a unipolar zeroing code. Each symbol must have a low level. Each symbol in this protocol starts with a high level. The high time width determines the "0" or "1" code. .

2. When writing programs, the minimum symbol period is $1.2 \mu s.$

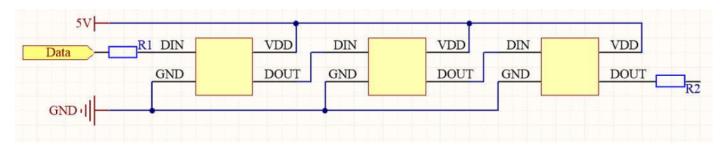
3. The high level time of "0" code and "1" code should be in accordance with the stipulated range in the above table. The low level time requirement of "0" code and "1" code is less than 20μ s

12.Coding timing diagram:

The chip protocol adopt unipolar return-to-zero code, and every symbol must have be converted. Each symbol of this protocol starts with a high level, and the time width of the high level determines the "0" code or the "1" code.

13.Data transmission method (Ta=25°C) :

			r	eset cod >=80us			reset	code
	Data refresh cycle 1					Data refresh	cycle 2—	
D1	first 24 bit	second 24 blt	third 24 bit		first 24 bit	second 24 blt	third 24 bit	
D2		second 24 blt	third 24 bit			second 24 blt	third 24 bit	
D3			third 24 bit				third 24 bit	
D4								

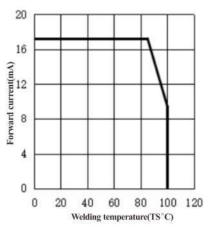

Note: D1 is the data sent by the MCU, and D2, D3, and D4 are the data that the cascade circuit automatically reshapes and forwards.

14.Data structure (Ta=25°C):

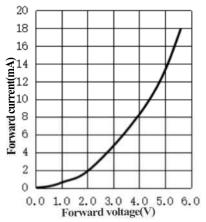
	G6										
R3	R2	R1	R0	B7	B6	B5	B4	B3	B2	B1	B0

Note: The high bit is sent first, and the data is sent in the order of GRB (G7 \rightarrow G6 \rightarrowB0).

14.Typical application circuit:

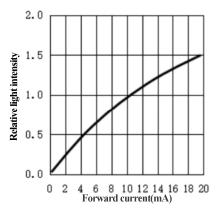


In the practical application circuit, the signal input and output pins of the IC signal input and output pins should be connected to the signal input and output terminals. In addition, in order to make the IC chip is more stable, even the capacitance between beads is essential back; Application: used for soft lamp strip or hard light, lamp beads transmission distance is short, suggested in signal in time the clock lineinput and output end of each connected in series protection resistors, R1=R2 of about 500 ohms.

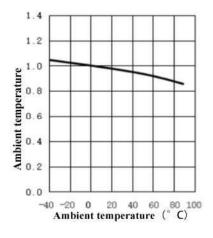

Application: for module or general special-shaped products, lamp beads transmission distance is long, because of different wire and transmission distance, in the signal in time clock at both ends of the line on grounding protection resistance will be slightly different; to the actual use of fixed;

15.Typical optical characteristic curve:

Welding temperature VS Forward current

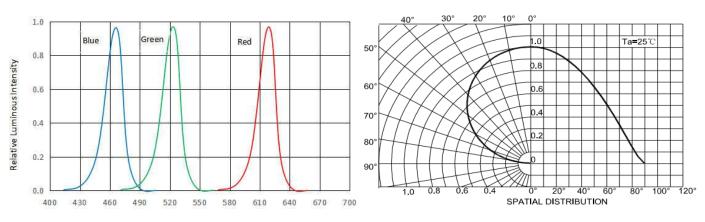


Forward voltage VS Forward current



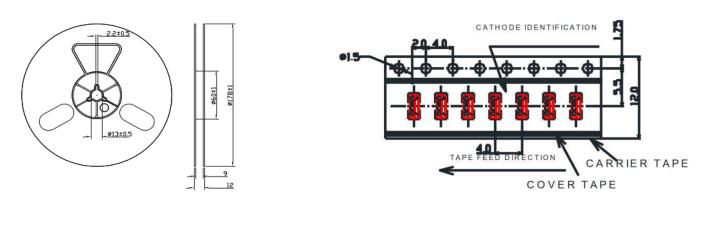
Relative spectral distribution chart

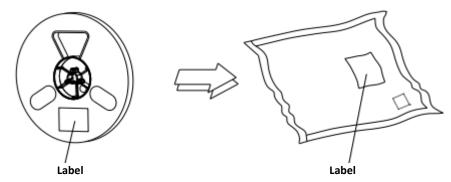
Forward current VS Relative light intensity



Ambient temperature VS Rrelative light intensity

Relative spectral distribution chart


Radiation diagram 辐射图特性曲线



16.Packing specifications:

Reel size:

Carrier tape specifications (unit: mm)

Model	Package	Package Emitting color		Reel/CTN	
SK6812V12- Side	SMD4020	Side emitting RGB	1.5k/Reel	50Reel/CTN	

GREELED ELECTRONIC LTD

Add: 2F,1st Building logistic park,shiyan town,shenzhen city E-mail:sales@gree-leds.com Skype:greeledelectronic